skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schommer‐Pries, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A ‐dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal ‐category of ‐bordisms (embedded into and equipped with a tangential ‐structure) that lands in the Picard subcategory of the target symmetric monoidal ‐category. We classify these field theories in terms of the cohomology of the ‐connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the ‐category of bordisms with as an ‐space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math.202(2009), no. 2, 195–239) in the case , and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the ‐uple case. We also obtain results for the ‐category of ‐bordisms embedding into a fixed ambient manifold , generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN2011(2011), no. 3, 572–608) in the case . We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of ‐vector spaces (for ), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math.25(2013), no. 5, 1067–1106. arXiv:0912.4706). 
    more » « less